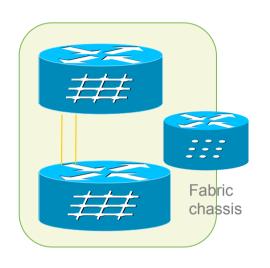

illiilli CISCO

nV Technology

Christian Schmutzer
Sr. Technical Marketing Engineer, ERBU cschmutz@cisco.com

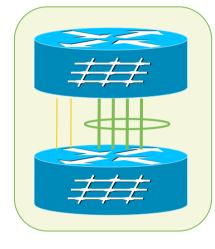
Cisco Expo 2012, Serbia

ASR9000 nV Technology Drivers



© 2010 Cisco and/or its affiliates. All rights reserved.

ASR9000 nV Technology Overview

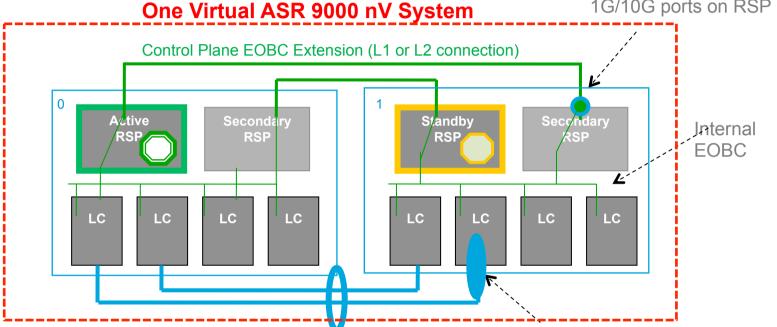

nV Satellite nV Edge 3x standalone _ switches 2x standalone 1x Logical Instance Nodes

ASR 9000 nV Edge Overview Super, Simple Resiliency and more Capacity

Leverage existing IOS-XR CRS multi-chassis SW infrastructure

Simplified/Enhanced for ASR 9000 nV Edge

ASR 9000 nV Edge

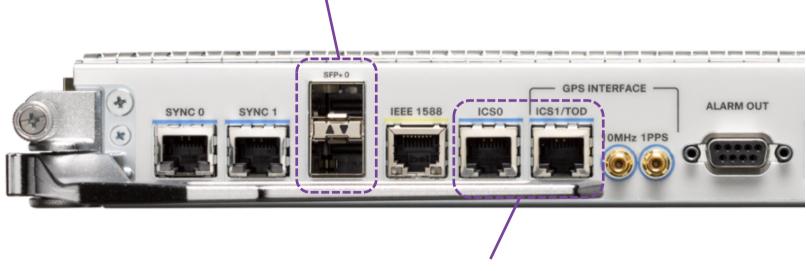

CRS Multi-Chassis

Single control plane, single management plane, fully distributed data plane across multiple* physical chassis → one virtual nV system

Super, Simple network resiliency, and extensible node capacity

nV Cluster Architecture

Special external EOBC 1G/10G ports on RSP


Inter-chassis data link (L1 connection) 10G or 100 G bundle (up to 32 ports)

Regular 10G or 100G data ports

- Control plane extension: Active RSP and standby RSP are on the different chassis, they sync up via external EOBC links "AS IF" they are in the same physical chassis
- Data plane extension: bundle regular data links into special "nV fabric link" to simulate switch fabric function between two physical chassis to data packet across
- No dedicated fabric chassis → flexible co-located or different location deployment

RSP400 enabling nV Edge

nV Edge Control Plane Extension Ports
 1GE (XR4.2.1), 10GE (future)

nV Edge Sychronization Extension Ports
 Future use for IEEE1588 and SyncE on nV Edge

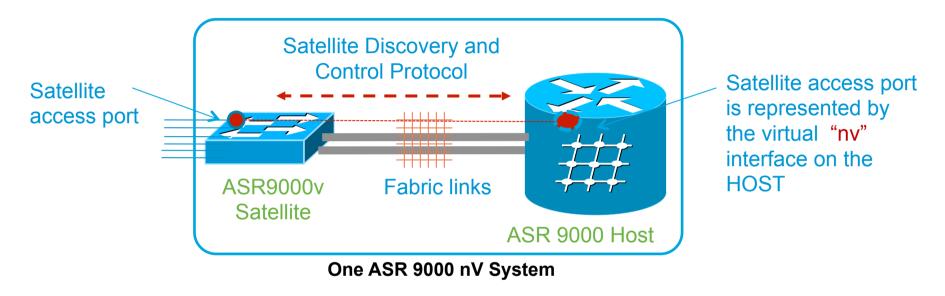
nV Edge Configuration

1 Configure nv Edge globally

```
Nv edge-system serial FOX1437GC1R rack 1 ← static mapping of chassis serial# and rack# serial FOX1439G63M rack 0
```

Configure the inter-chassis fabric(data plane) links

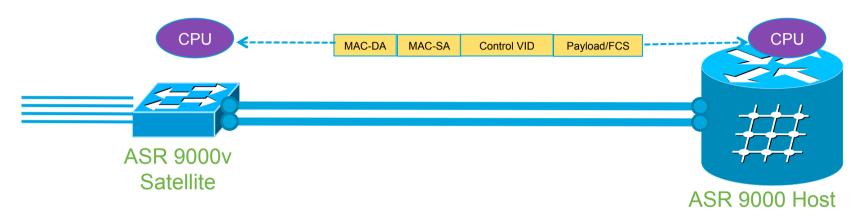
```
interface TenGigE0/2/0/0
    nv
    fabric-link edge-system
interface TenGigE1/2/0/0
    nv
    fabric-link edge-system
```


After this configuration, rack 1 will reload and then join cluster after it boot up Now you successfully convert two standalone ASR 9000 into one ASR 9000 nV Edge

As simple as that !!!

1st nV Satellite - ASR9000v

Power Feeds 1 RU ANSI & FTSI Field Replaceable Fan Tray **Compliant Design** Redundant -24vDC, & · Redundant Fans -48vDC Power Feeds ToD/PSS Output · Single AC power feed **LEDs** • Bits Out 4x10G SFP+ Initially used as Inter-Connect Ports Plug-n-Play In-Band Management 44x10/100/1000 Mbps Pluggables · Automatic Discovery and Provisioning · Co-Located or Remote Distribution Full Line Rate Packet Processing and Traffic Management Industrial Temp Rated for Flexible Deployments Pay As You Grow Licensing (11 port -40C to +65C Operational Temperature Increments) • -40C to +70C Storage Temperature


nV Satellite Overview

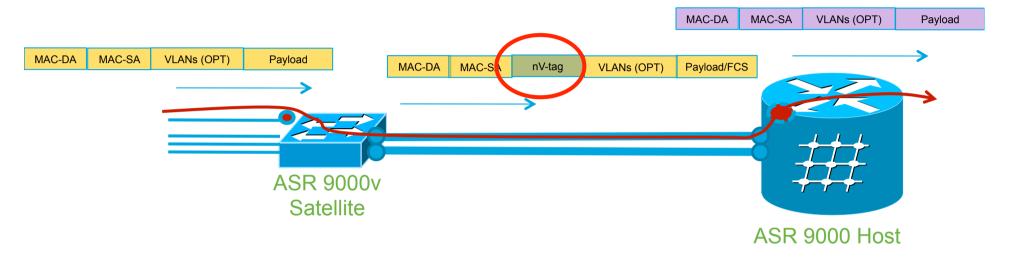
- Satellite is discovered upon connection to the host
- Satellite requires SW support to understand Satellite Discovery/ Control messages
- Satellite can be co-located or geographically separated (no distance limitation)

© 2010 Cisco and/or its affiliates. All rights reserved

nV Satellite Control Plane

Discovery Phase

CDP like protocol to discover Satellites


Heartbeat messages sent every second to detect Satellite and Fabric Link Failures

Control Phase

Inter-process Communication Channel (TCP socket)

Get/Set style messages to provision the Satellite and its ports and to retrieve statistics

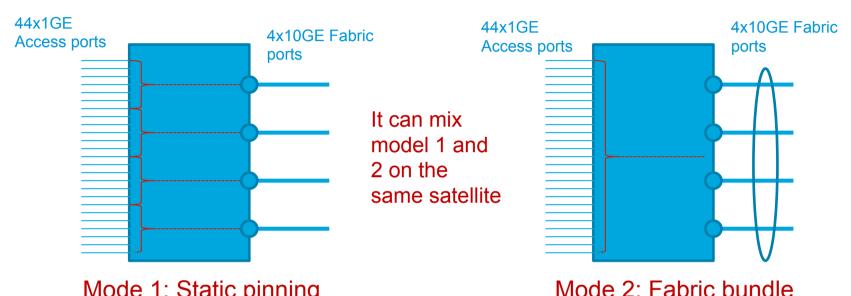
nV Satellite Dataplane

On the Satellite

Receive Ethernet Frames on a port → add nV-Tag for this port onto the frame Forward the Frame out on the Fabric Link (no MAC learning, static connect)

On the Host

Receive Frames on a fabric link → nV-Tag identifies Satellite Virtual Interface Normal Features processing as for local ports (QoS, ACL, L2/L3/MPLS, ...)


Configuration Examples

```
satellite 100 ← define satellite ID
  description my love satellite
  type asr9000v
 satellite 101 ← define satellite
 description your love satellite
 type asr9000v
interface TenGiqE 0/2/0/2
 nv
    satellite-fabric-link satellite 100
     remote-ports
       GigabitEthernet 0/0/0-9
interface bundle-ethernet 10
 nv
   satellite-fabric-link satellite 101
   remote-ports
       GigabitEthernet 0/0/10-19
```

Minimal configuration is required to define satellite, fabric port and port mapping (default port mapping is used if no explicit configuration)

nv

Satellite Deployment Models

Mode 1: Static pinning No fabric port redundancy

- Fabric port redundancy
- Any access ports could be mapped to any single fabric port.
 - Default mapping behavior: all access ports mapped to the first configured fabric port
- If fabric link fails, ALL mapped access ports will be brought down as well

- Access ports are mapped to a fabric bundle
- Per Access port Load-balancing across fabric bundle members
- If fabric member port fail, re-hashing to different fabric member happens automtically

Configuration – Example Virtual "nv" interface configuration

interface GigabitEthernet 100/0/0/1
ipv4 address 2.2.2.2 255.255.255.0

Same IOS-XR interface naming convention as local interface. First number is the satellite ID

Cisco Confidential

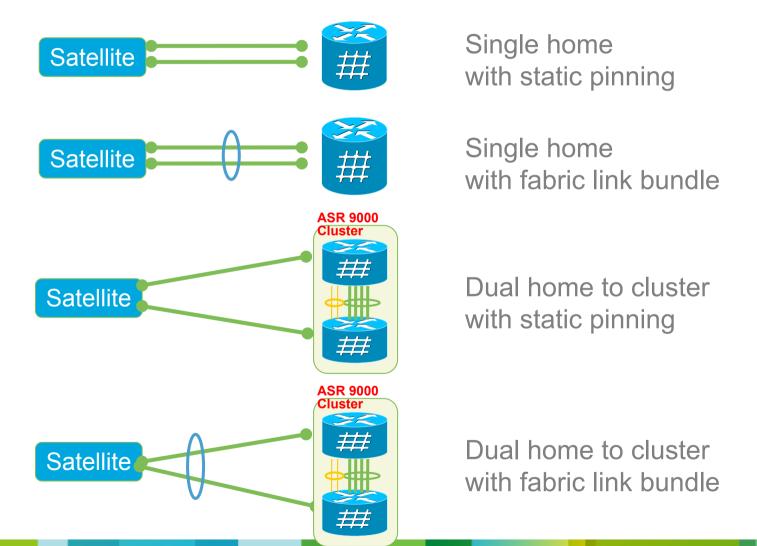
interface Bundle-ethernet 200

ipv4 address 1.1.1.1 255.255.255.0

Satellite-ID/satellite-slot/satellite-bay/satellite-port

interface GigabitEthernet 100/0/0/2

bundle-id 200


interface GigabitEthernet 100/0/0/3

bundle-id 200

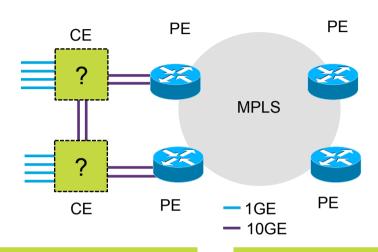
interface GigabitEthernet 101/0/0/3.10 12transport

encapsulation dot1q 101 second 100 rewrite ingress tag pop 1 sym service-policy output test ethernet oam ...

Initial nV Satellite Topologies

HW Support (XR 4.2.1)

	nV Satellite	nV Edge
ASR9001	No *)	No *)
ASR9006	yes	yes
ASR9010	yes	yes
ASR9000v	yes	N/A
RSP	yes	no
RSP440	yes	yes
1st Generation Cards (4x10GE, 8x10GE, Combo, 40xGE,)	Yes (if not connected to satellite)	no
2 nd generation cards (24x10GE, 2x 100GE, MOD80/160,)	yes	yes
SIP700	yes	yes
ISM	Yes (but no streaming to satellites)	No *)


SW Support (XR4.2.1)

- Generally all features a standalone ASR9000 does support
- Some exceptions:

	nV Satellite	nV Edge
BNG	no *)	yes
IEEE1588	no *)	no *)
SyncE	no *)	no *)
IC-SSO for MLPPP (SIP700)	N/A	N/A

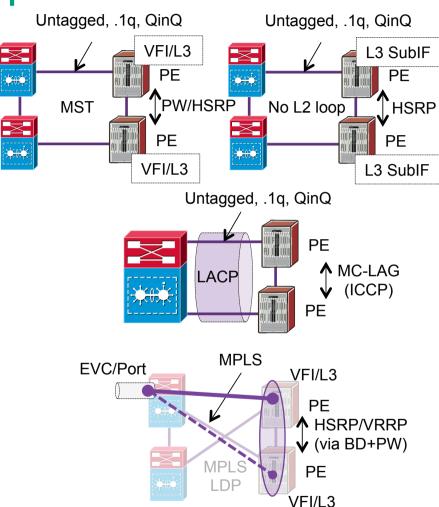
POP Scaling Design Options Platforms

ASR9000

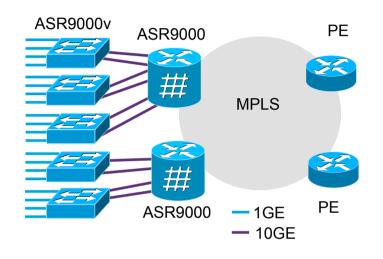
- MST support
- 32k PWs per Node
- Flexible VLAN Mapping via EVC
- Feature-rich per Port QoS
- High Density 1GE and 10GE
 440Gbits per Slot Capacity
- IOS XR Operating System
 Cluster and Satellite Support

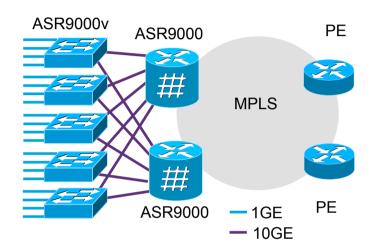
Catalyst 6500E

- MST support
- 4k PWs per Node
- · Per Port Group VLAN Rewrite
- Campus centric per Port QoS
- Medium Density 1GE and 10GE
- IOS Operating System
 Virtual Switching System (VSS)

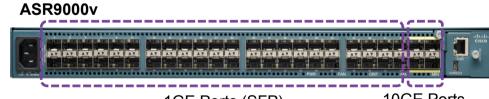

POP Scaling Design Options

Technology Choices


 Layer 2 CPE with or without MST Standard/legacy design End-Device/Host attachment?

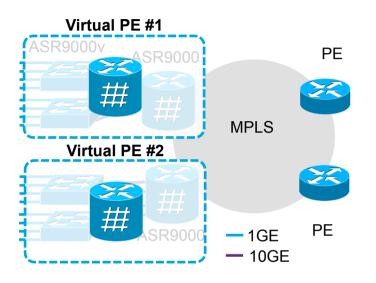

- VSS/Cluster with LACP (LAG)
 MC-LACP (LAG) on PE
 Two cat6500s look like "one switch"
- Spoke Pseudo-wires

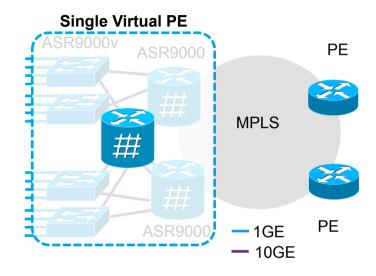
 aka H-VPLS
 No L2 MAC learning on CE
 PW is terminated at L3 in PE
 HSRP/VPLS on PE for PW failover
- Cisco nV Technology
 See next slide



Scaling POP Design with ASR9000 Cisco nV Technology

- "Unlimited" Access Port Scale
 - 44x 1GE Ports per ASR9000v & up to 4x10GE toward ASR9000
 - 24x 10GE per Slot on ASR9000
 - → ~240-900x GE ports per ASR9000 slot

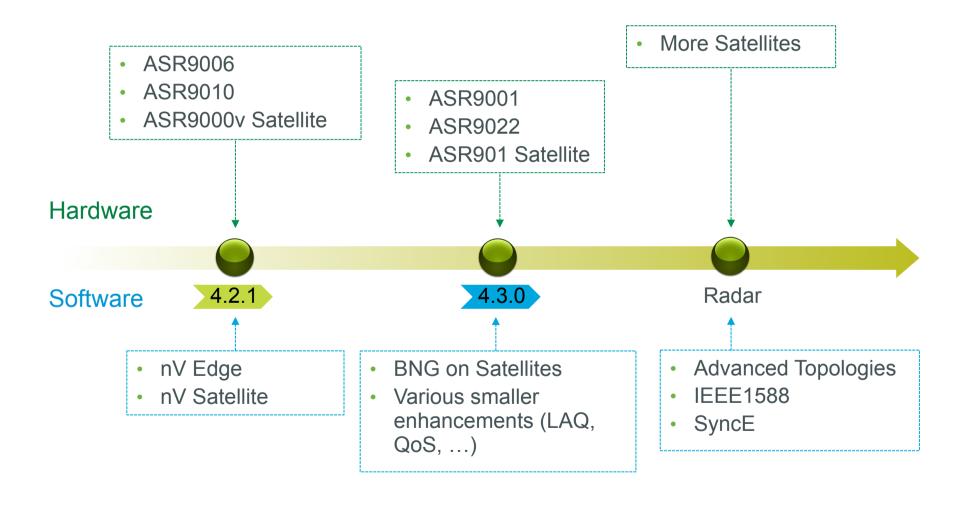



Cost effective "pay as you grow" Model

1GE Ports (SFP) 10GE Ports (SFP+)

2010 Cisco and/or its affiliates. All rights reserved

Scaling POP Design with ASR9000 Cisco nV Technology



- Simplified Operations no Pseudo-wires, no Spanning-Tree, etc ASR9000v act as "Port Extenders"
 - 2x ASR9000s can act as 1x PE to the MPLS network Central Software Management
- Enhanced Network Resiliency
 - No network-wide IGP and BGP convergence required for many failures No STP required for MGW attachment

© 2010 Cisco and/or its affiliates. All rights reserved.

nV Technology - Roadmap

© 2010 Cisco and/or its affiliates. All rights reserved.

References

nV Technology on cisco.com

http://www.cisco.com/en/US/solutions/ns341/ns524/ns562/ns592/asr_9000_system_video.html

nV Whitepaper

http://tools.cisco.com/search/display?url=http%3A%2F%2Fwww.cisco.com %2Fen%2FUS%2Fsolutions%2Fcollateral %2Fns341%2Fns524%2Fns562%2Fns592%2Fasr_nv_100611.pdf&pos=4&str queryid=1&websessionid=wbcVwjsH_VXZN4TCS1yjNuF

ASR9000 goes Mobile with nV Technology

http://newsroom.cisco.com/release/466676/authorbio-detail?articleId=614033

